Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Solve by reduction of order: yy''=3y'^2 The answer the book has is y=(c1*x+c2)^(-1/2) I can't figure out how to put it in standard form to get the above answer.

Differential Equations
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
do you have a solution ?
No, I'm not sure how to go about doing this problem :/ I know that for a homogeneous 2nd order ODE, the solution is y=c1y1+c2y2 but since the above equation cannot be put in standard form I can't see how to solve it. I should add that the problem wants me to use reduction of order, where I first pick a y1 solution by inspection, then get y2 using: \[y_2=y_1u=y_1\int\limits_{}^{}U\;dx\] where \[U=\frac{ 1 }{ y^2 }e^{-\int\limits_{}^{}p\;dx}\] I can do it for a regular problem but I'm lost on this one...
so first we need to find \(y_1\), a solution to the equation, i'm not sure how to do this

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question