Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

integral (e^x(xcos x+sin x))dx=?

I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

\[ \large \int\limits e^x(xcos x+\sin x)dx\]
I have been stuck on this question for sometime..I am missing something somewhere.
@ganeshie8 , @jim_thompson5910 Can you help?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

its a case in integration of by parts!!
\[=\int\limits (x \cos x) e ^{x} dx+\int\limits (\sin x) e ^{x}dx\] \[=x \cos x e ^{x}-\int\limits \left\{ x \left( -\sin x \right)+\cos x *1 \right\}e ^{x} dx+\[\sin x e ^{x}-\int\limits \cos x e ^{x}dx\]+c\] there is some mistake,try to find out.
I am thinking of doing it in the form e^x(f(x)+f'(x)) By supplying terms and subtracting.
i have tried that also.
@surjithayer How did you get integral (xcos x)e^x dx=(xcos x)(e^x)
I am confused :/
you are doing that right and its integration is e^x.f(x)+c
@divu.mkr can you explain?
everything i wrote is gone
it all ends up being in terms of:\[\int\limits_{}^{}e^x cosx dx= \frac{ 1 }{ 2 }e^x(sinx + cosx) + C\] and\[\int\limits_{}^{}e^x sinx dx= \frac{ 1 }{ 2 }e^x(sinx - cosx) + C\]. a rather simple integration by parts. and seperating it like surji suggested and integrating only the first term by parts one gives:\[\frac{ x }{ 2 }e^x(sinx+cosx) - \frac{ 1 }{ 2 }\int\limits_{}^{} e^x (sinx + cosx)dx + C + \int\limits_{}^{}e^x sinx dx\]
was my own fault. i pressed a wrong key and then backspace
Isnt it e^x (xcos x)?
the integral of that, by parts once, gives the first two terms of the last line. taking u = x dv = e^xcosx
i wouldn't mind solving it entirely if you're not convinced :)
yeah please :P
Its just I want to to do this qn in form e^x((fx)+f'(x)) Format and not apply parts.
i'm not familiar with that method at all. only parts
did you want to see parts or you know how?
yeah I want to see parts.
i guess the only part is the:\[\int\limits_{}^{} e^x cosx dx\] u = e^x; du = e^x dx dv = cosx dx; v = sinx \[\int\limits_{}^{} e^x cosx dx = e^xsinx - \int\limits_{}^{} e^x sinx dx\] u = e^x; du = e^x dx dv = sinx dx; v = -cosx \[\int\limits_{}^{}e^x cosx dx= e^x sinx - \left( -e^x cosx + \int\limits_{}^{}e^x cosxdx \right)\] \[\int\limits_{}^{}e^x cosx dx = e^x(cosx + sinx) - \int\limits_{}^{}e^x cosx dx\]\[2\int\limits_{}^{}e^x cosx dx = e^x(sinx + cosx)\]\[\int\limits_{}^{}e^x cosx dx = \frac{ 1 }{ 2 }e^x (sinx + cosx)\]
do you have the answer..? i got one :D
yes final answer is 1/2e^x(xsin x+xcos x-cos x)+c
@Euler271 Yeah I get it now thanks!
glad i could help :)
i have tried that also.
Lots of integration by parts. Work on this in pieces (I've reused u and v several times but hopefully you can tell which is which by context): $$ \int e^x(x\cos x+\sin x)dx\\ \int xe^x \cos x ~dx+\int xe^x \sin x~dx\\ \text{For }\int xe^x \cos x ~dx\\ \text{Let }u=x,dv=e^x\cos x\\du=x,v=\int e^x\cos x dx\\ \text{For }\int e^x\cos x dx\\ \text{Let }u=e^x,dv=\cos x\\ du=e^x,v=\sin x\\ \text{Then }uv-\int vdu=\\ e^x\sin x-\int e^x\sin x dx\\ \int e^x\sin x dx=\\ \text{Let }u=e^x,dv=\sin x\\ \text{then }du=e^x,v=-\cos x\\ uv-\int vdu = \\ -e^x\cos x+\int e^x\cos x dx\\ \text{Combining these results:}\\ \int e^x\cos x=\cfrac{e^x}{2}(\sin x+\cos x)\\ \text {So we now have }\\ \int xe^x \cos x ~dx\\ =\cfrac{xe^x}{2}(\sin x + \cos x)-\int \cfrac{e^x}{2}(\sin x + \cos x)dx+\\ \qquad \cfrac{e^x}{2}(\sin x - \cos x)\\ \text{Take, }\int\frac{e^x}{2}(\sin x + \cos x)dx\\ \int\frac{e^x}{2}\sin x + \int \cfrac{e^x}{2}\cos xdx\\ =\cfrac{e^x}{4}(\sin x -cos x)+\cfrac{e^x}{4}(\sin x +cos x)\\ =\cfrac{e^x}{2}\sin x\\ \text{So, }\\ \int xe^x \cos x ~dx\\ =\cfrac{xe^x}{2}(\sin x + \cos x)-\cfrac{e^x}{2}\sin x+\cfrac{e^x}{2}(\sin x - \cos x)\\ =\cfrac{e^x}{2}(x\sin x + (x-1)\cos x)\\ $$ Whew!! That's it!

Not the answer you are looking for?

Search for more explanations.

Ask your own question