Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

REzai Group Title

Determine the solution y(x) satisfying y'' + 2y' + 2y = 0 satisfying y(1)=2 and y'(1) =1. What technique would I use?

  • one year ago
  • one year ago

  • This Question is Open
  1. allank Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    That's a nice constant-coefficient, homogeneous ordinary differential equation. We can get it's characteristic polynomial: \[r^2+2r+2=0\] Then solve for the polynomial's roots (r1 and r2). The fundamental set of solutions will then be of the form \[y_1(t)= e ^{r_1*t} ; y_2(t) = e^{r_2*t} \] If we get a single repeated root r1, the fundamental solution set will be \[y_1(t)= e ^{r_1*t} ; y_2(t) = t*e^{r_1*t} \] Then we write the general solution as \[y(t)=c_1y_1(t) + c_2y_2(t)\] And finally use the initial conditions to solve for c1 and c2.

    • one year ago
  2. surjithayer Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[r=\frac{ -2\pm \sqrt{2^{2}-4*1*2} }{2*1 }=-1 \pm \iota \] solution is \[y=e ^{-x}\left[ c1 \cos x+c2 \sin x \right]\] find c1 and c2 from the initial conditions.

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.