Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

let A and B be two symmetric matrices of the same order. Develop an algorithm to compute C=A+B,taking advantage of symmetry for each matrix.Your algorithm should overwrite B with C. What is the flop count?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

So we know that this means A[i,j]=A[j,i] , B[i,j]=B[j,i], and C[i,j]=C[j,i]=A[i,j]+B[i,j] A and B are symmetrical. This means A+B is symmetrical.
okay, but how to write the pseudo code for the algorithm?
You need to make a loop I think the loops usually use something like for...do

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

okay..it is correct if i do like this : Input: Dim n for \[a _{ij}\], j>=i and \[b _{ij}\],j>=i where i,j=1,...,n Output : B=C Step 1 : for j=1,...,n for i=1,...,j \[b _{ij}^{new}=a _{ij}+b _{ij}\]
but, i don't have any idea to make this as programming.
I'm thinking... Does your algorithm use the fact that A and B are symmetrical? We should be able to do something like Step 1 : for j=1,...,n for i=1,...,j if i does not equal j, then output cij=cji=aij+bij if i equals j, then cij=aij+bij What do you think of this part? Do you think you can use it? Just trying to help.
yes. it's also correct. but do you know how to make it into pseudo code form?such as using mathematica or MATLAB?
err...nope. It has been way to long. I think I could do it with maple after trail and error. But I don't have maple on this computer.
Owh, it's okay. One more question, do you know how to do calculate flop-count? My friend get \[\frac{ n(n+1) }{ 2 }\] is it correct?
actually that is what I got. You want to know how I figured it out... Ok we want to basically know how many operations we did. And I had to look up the definition of flops. So we want to count the number of operations we did. I counted my diagonal elements which were n. Then for the first row we had (n-1) entries left to calculate second row we had (n-2) entries left to calculate third row we had (n-3) entries left to calculate ....... nth row we had (n-n) entries left to calculate So we had n diagonal entries + (n-1)+(n-2)+...+(n-n) other entries to calculate. So we have n+sum(n-i, i=1..n) Do you understand how I got this so far? We can simplify this to what your friend got.
\[n+\sum_{i=1}^{n}(n-i)\] \[n+\sum_{i=1}^{n}n - \sum_{i=1}^{n}i\] \[n+n(n)-\frac{n(n+1)}{2}\] \[n(n+1)-\frac{n(n+1)}{2}=\frac{2n(n+1)-n(n+1)}{2}=\frac{(n+1)(2n-n)}{2}=\frac{1n(n+1)}{2}\]
I counted each entry we had to calculate. I know the diagonal entries will be repeated once but all other entries will be counted twice. So you know if we had a 3 by 3 symmetric matrix. You find the sum of the operations we did by counting the diagonal entries and the entries above the diagonal. So for a 3 b3 symmetric matrix, we have 3 diagonal entries then the number of entries above that diagonal is (3-1)+(3-2)+(3-3) (3-1)=2 that is how many are above the diagonal in the first row (3-2)=1 that is how many are above the diagonal in the second row (3-3)=0 that is how many are above the diagonal in the 3rd row Now I ignored everything below the diagonal because we already performed those operations above the diagonal. We were suppose to use the fact that the matrix was symmetric after all.
So using this we have 3+(3-1)+(3-2)+(3-3) or you can use the simplified formula 3(3+1)/2
Makes sense how I found the flops?
yes. i'm still trying to understand what you explain. =)
[ a11 a12 a13] [ a22 a23] [ a33] Or you could have looked at is in much simpler way lol 3+2+1 =3(3+1)/2
for a 4by 4, we could have said (4+3+2+1)
I made it more complicated than it should have been Do you see what I mean so for an n by n, we do 1+2+...+n
But either way the formula can be simplified to that n(n+1)/2 one
ohhh..now i understand already how to get n(n+1)/2. it's simple but quite tricky. =)
|dw:1381169885319:dw| 1+2+...(n-1)+n \[\sum_{i=1}^{n}i=\frac{n(n+1)}{2}\]
|dw:1381169994491:dw|
woww..you tried so hard to make me understand. thank you so much. now, honestly, i understand already. =) are you a lecturer?
Yes.
oh, i see. until right now, i'm still dont know how to develop an algorithm to compute c=a+b.
Is it because you aren't sure what is acceptable to write exactly?
And also because you want to input in the matlab and see if it works?
yes.
Yeah. I will have to do some review on that part. I'm going to class soon. I can't promise I will look at it tonight but I think @zarkon might know matlab. I could be wrong. No promises. lol.
hehe. It's okay. You helped me a lot today. Actually, i'm going to sleep already because in Malaysia, right now is midnight. Thank you so much for your helped. May God bless you. =)

Not the answer you are looking for?

Search for more explanations.

Ask your own question