osanseviero
  • osanseviero
A function operation
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
osanseviero
  • osanseviero
if \[F(x)=\frac{ 1 }{ x }\] find and express its simplest form: \[\frac{ f(a+h)-f(a) }{ h }\]
osanseviero
  • osanseviero
That's all I have, what should I do?
anonymous
  • anonymous
You should get -1/ (a(a+h))

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

osanseviero
  • osanseviero
\[(\frac{ 1 }{ a+h }-\frac{ 1 }{ a }) \div h\]
osanseviero
  • osanseviero
Like that?
anonymous
  • anonymous
I'll start you off.......... Given: f(x) = 1/x So, f(a+h) = 1/(a+h) and f(a) = 1/a So the expression you typed above is just: [ (1/(a+h) - 1/a] /h When you simplify that complex fraction above (not hard at all), you get -1/[a(a+h)] as your final answer.
anonymous
  • anonymous
Yes, like that!
osanseviero
  • osanseviero
Can you explain how did you simplify, please?
anonymous
  • anonymous
Let's take the numerator........ 1/(a+h) - 1/a To subtract, you get the LCD which is a(a+h), so 1/(a+h) - 1/a = [a-(a+h)]/a(a+h) = -h/(a(a+h)) Now, the denominator is just h, so you get -h/(a(a+h)) divided by h/1 = -1/(a(a+h))
anonymous
  • anonymous
makes sense?
osanseviero
  • osanseviero
yep, thanks
anonymous
  • anonymous
welcome.
osanseviero
  • osanseviero
I had a silly math confusion

Looking for something else?

Not the answer you are looking for? Search for more explanations.