A function operation

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

if \[F(x)=\frac{ 1 }{ x }\] find and express its simplest form: \[\frac{ f(a+h)-f(a) }{ h }\]
That's all I have, what should I do?
You should get -1/ (a(a+h))

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[(\frac{ 1 }{ a+h }-\frac{ 1 }{ a }) \div h\]
Like that?
I'll start you off.......... Given: f(x) = 1/x So, f(a+h) = 1/(a+h) and f(a) = 1/a So the expression you typed above is just: [ (1/(a+h) - 1/a] /h When you simplify that complex fraction above (not hard at all), you get -1/[a(a+h)] as your final answer.
Yes, like that!
Can you explain how did you simplify, please?
Let's take the numerator........ 1/(a+h) - 1/a To subtract, you get the LCD which is a(a+h), so 1/(a+h) - 1/a = [a-(a+h)]/a(a+h) = -h/(a(a+h)) Now, the denominator is just h, so you get -h/(a(a+h)) divided by h/1 = -1/(a(a+h))
makes sense?
yep, thanks
welcome.
I had a silly math confusion

Not the answer you are looking for?

Search for more explanations.

Ask your own question