osanseviero
  • osanseviero
Inverse logarithmic function
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
osanseviero
  • osanseviero
So they want the inverse of \[F(x)=\ln \sqrt{x}\] So the inverse is \[x=\ln \sqrt{y}\]
hartnn
  • hartnn
yep, now isolate y
hartnn
  • hartnn
\(\Large a=\ln c \implies c = e^a \)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

osanseviero
  • osanseviero
\[y=\left( e ^{x} \right)^{2}\] the 2 can go down, right?
osanseviero
  • osanseviero
y=2e^x
hartnn
  • hartnn
not actually
hartnn
  • hartnn
\(\Large (e^x)^2 = e^{2x}\)
osanseviero
  • osanseviero
oops, another silly mistake
osanseviero
  • osanseviero
Can someone help me demostrate that (FoFinverse)(x)=(FinverseoF)(x)=x ?
hartnn
  • hartnn
demonstrate ? you have a function for verifying that ?
osanseviero
  • osanseviero
The one we just did
osanseviero
  • osanseviero
\[\ln \sqrt{e ^{2x}} = e ^{2\ln \sqrt{x}}=x\]
hartnn
  • hartnn
so, f inverse = e^2x just plug in x =ln \sqrt x oh, you did it :)
osanseviero
  • osanseviero
But how and why? (I think that was a good statement)
osanseviero
  • osanseviero
And how would that be x?
hartnn
  • hartnn
ln x^m = m ln x
hartnn
  • hartnn
ln e =1
hartnn
  • hartnn
\(\sqrt {(e^x)^2} = |e^x| \\ \ln |e^x| = x \ln e = x\)
hartnn
  • hartnn
ok ?
osanseviero
  • osanseviero
so the left one is kinda obvious, so it is x
osanseviero
  • osanseviero
Oh...and the other one is with \[a ^{logaN}=\]
osanseviero
  • osanseviero
N
hartnn
  • hartnn
\(\huge a^{\log_aN}=N\)
hartnn
  • hartnn
yes
osanseviero
  • osanseviero
:) Now I understand, thanks for fifth time, just one more question :P
hartnn
  • hartnn
welcome ^_^
osanseviero
  • osanseviero
Which would be the domain and the range of the first, normal function?
hartnn
  • hartnn
domain of ln sqrt x ?
hartnn
  • hartnn
since its sqrt x, x>= 0 since its ln, sqrt x >0 in all, x>0
osanseviero
  • osanseviero
so the range of the inverse is x>0
osanseviero
  • osanseviero
Wish me good luck tomorrow
hartnn
  • hartnn
yes! best of luck! hope you get full marks :)
osanseviero
  • osanseviero
I hope so, this will be a hard examn...all types of functions, trigonometric identities, operations with functions
hartnn
  • hartnn
if you have practices enough, nothing is hard :)
osanseviero
  • osanseviero
Thanks for the help all night!
hartnn
  • hartnn
you're welcome ^_^

Looking for something else?

Not the answer you are looking for? Search for more explanations.