Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

sandm Group Title

Hi, could someone help me please with these? Problem 1) solve the system equations: dx/dt=4x+3y dy/dt=-x+t with x(0)=2, y(0)=-1 as initial conditions. Problem 2) Find the surface area of that portion of the surface z=1- root-square of x^2+y^2 that lies in the first octant. Thanks in advance.

  • one year ago
  • one year ago

  • This Question is Closed
  1. sashankvilla Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    1)try to integrate the two equations

    • 11 months ago
  2. captainZero Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    p.1: from equation 1, we get x''=4x'+3y', substituting y'=-x+t, the problem is now a differential equation: x''-4x'+3x=3t with i.c. x(0)=2, x'(0)=5. if you've done 18.03, you can solve it easily. p.2: area of the portion is \[\iint_{S}dS=\iint_{R_xy}\sqrt{(z'_x)^2+(z'_y)^2+1}dxdy\]. S is lying over area Rxy.

    • 10 months ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.