Hi, could someone help me please with these? Problem 1) solve the system equations: dx/dt=4x+3y dy/dt=-x+t with x(0)=2, y(0)=-1 as initial conditions. Problem 2) Find the surface area of that portion of the surface z=1- root-square of x^2+y^2 that lies in the first octant. Thanks in advance.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Hi, could someone help me please with these? Problem 1) solve the system equations: dx/dt=4x+3y dy/dt=-x+t with x(0)=2, y(0)=-1 as initial conditions. Problem 2) Find the surface area of that portion of the surface z=1- root-square of x^2+y^2 that lies in the first octant. Thanks in advance.

OCW Scholar - Multivariable Calculus
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1)try to integrate the two equations
p.1: from equation 1, we get x''=4x'+3y', substituting y'=-x+t, the problem is now a differential equation: x''-4x'+3x=3t with i.c. x(0)=2, x'(0)=5. if you've done 18.03, you can solve it easily. p.2: area of the portion is \[\iint_{S}dS=\iint_{R_xy}\sqrt{(z'_x)^2+(z'_y)^2+1}dxdy\]. S is lying over area Rxy.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question