Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Determine if the next progression have a limit (demostrate it) and determine it

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

\[\left( -1^{n} \right)\left( \frac{ 5n+4 }{ 2n } \right)\]
Help, please?
:/

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

As n increases in the positive direction, \(\dfrac{5n+4}{2n}\) approaches \(\dfrac{5}{2}\). Follow with your mind as n increases. The little 4 on the end of the numerator becomes less and less significant. The terms do NOT approach zero.
oh...I think I see it now...but how can i demostrate if it is it's limit?
but there is also the -1^n
So it approaches 5/2 and -5/2 ?
The typical demonstration is a division by n. For n > 0, \(\dfrac{5n+4}{2n} = \dfrac{5 + \dfrac{4}{n}}{2}\). In this form, it is relatively obvious that the limit it 5/2 as n increases. The FIRST criterion for convergence is terms that approach ZERO. Nothing else will do. These terms do not approach zero, therefore, we do not care about the alternating sign. If the terms approach zero, THEN we'll worry about the sign.
what I mean is that there is a (-1^n) multiplying all of that...so -5/2 is also a limit
No, this is not a limit. Limits come alone, not in pairs. The terms, without the sign, approach 5/2. I may have stated that carelessly, before. The actual terms, including the sign, do not have a limit. They is oscillating.
Oh...okk
So for this there isnt a limit, neither \[\frac{ 1 }{ 2 },2^{2}, \frac{ 1 }{ 2^{3} }\]
Seriously? An alternating sign in the exponent? No. No limit.
I thought so, thanks :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question