osanseviero
  • osanseviero
Which is the limit of 0.4, 0.44, 0.444, 0.4444...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Are you talking about an infinite number?
osanseviero
  • osanseviero
I will continue adding and adding and adding...so...does it go to infinite? or is there a limit?
anonymous
  • anonymous
No there is no limit.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Kira_Yamato
  • Kira_Yamato
Original SEQ: 0.4, 0.44, 0.444, 0.4444 Difference 1: 0.04 , 0.004 , 0.0004, which is a geometric progression ^^
Kira_Yamato
  • Kira_Yamato
The difference between the terms has a limit. Just add that to 0.4
anonymous
  • anonymous
anonymous
  • anonymous
1/3 = 0.333... (the 3 repeats forever) 1/7 = 0.14285714285... ( the "142857" repeats forever) 77/600 = 0.128333... (the 3 repeats forever) The part that repeats is usually shown by placing dots over the first and last digits of the repeating pattern, or sometimes a line over the pattern. Also called a "Repeating Decimal".
UnkleRhaukus
  • UnkleRhaukus
the as n approaches infinity the nth term approaches is 4/9, the sum always increases with successive terms

Looking for something else?

Not the answer you are looking for? Search for more explanations.