the vertices of a triangle are located at P (0,0), Q(8,6), R(-3,4). what is the perimeter of this triangle

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

the vertices of a triangle are located at P (0,0), Q(8,6), R(-3,4). what is the perimeter of this triangle

Trigonometry
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Vertices atr the corner points. plot them out, since this triangle is not sitting on the x plane to find the length of each side you are going to have to use the Pythagorean theorem (a²+b²=c²) or better in the form \[\sqrt{a ^{2}+b ^{2}}=c\] so to find the length of line QR we have\[\sqrt{(8-(-3))^2+(6-4)^2}=\sqrt{11^2+2^2}=\sqrt{121+4}=\sqrt{125}=5\sqrt{5}\] now you can do PQ and PR, once you have the length of all three sides then add them together to get the perimeter.
Line RP is 5 Line RQ² = 4 + 121 = 125 Line RQ = 11.1803398875 Line PQ² = 64 + 36 = 100 PQ = 10 Perimeter = 5 + 11.1803398875 + 100 = 116.1803398875
1 Attachment

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question