Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

(Classical Mechanics (with calc, but algebra could help)) Hi! I am stumped, but I feel like I should be able to get to the answer... A pitcher has a throwing speed that is a function of the angle the ball is thrown at. The problem is below, along with what I've thought of.

I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

\(\sf\Large\color{orange}{The\ Problem}\) "A baseball pitcher can throw a ball more easily horizontally than vertically. Assume that the pitcher's throwing speed varies with elevation angle approximately as \(v_0cos\dfrac{1}{2}\theta_0\), where \(\theta_0\) is the initial elevation angle and \(v_0\) is the initial velocity when the ball is thrown horizontally. Find the angle \(\theta_0\) at which the ball must be thrown to achieve maximum (problem a:) height and (problem b) range." That's the part I need help with.. \(\sf\Large\color{orange}{My\ thoughts...}\) I've thought of using \(v_y = \left(v_0\ \cos\left(\dfrac{1}{2} \theta_0\right)\right)\sin\theta_0+gt\) and setting \(v_y=0\). I tried to do the same with \(v_y^2=v_0\ \cos\left(\dfrac{1}{2}\theta_0\right)+2gh\), but to no avail. I also thought of looking at \(y(t)\) and finding the maximum of its function, but that looks to difficult. I'm a slow learner, but I like to learn! Thanks for any help!
(A) You can use \[V_{yfinal}^2 = V_{yinitial}^2 + 2(-g)(Y_{final} -Y_{initial}) \] where \[V_{yfinal} = 0m , Y_{initial} = 0 m/s, V_{yinitial} = (v_0cos(\frac{1}{2} \theta_0))sin\theta_0\] and solve for Yfinal
Thank you very much! I can't believe I missed that - especially after writing that equation down! Thank you!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

(B) You can find the time it takes to reach max height then multiple by two to get the total time in the air. Once you have the total time you can use the equation for average velocity in the x-direction to find the range: \[V_x = \frac{Range}{Total Time}\]
Thank you very much :)
your welcome
Wait.. I have to re-ask this. We could find \(Y_\text{final}\), but not \(\theta_0\)! I have found \(Y_\text{fintal}\).
From the look of the problem setup there are no numbers... it looks like you are finding a formula for \[\theta_0\]
Right.. I have to solve for what \(\theta_0\) would be to attain a maximum height. And, after that, I have to solve for a \(\theta_0\) that would give the maximum range. They will both be functions of \(v_0\). I should be able to calculate \(\theta_0\) in each case by knowing \(v_0\) and using substitution. I posted a new question, if you want to look there!

Not the answer you are looking for?

Search for more explanations.

Ask your own question