anonymous
  • anonymous
how do you write the square root of -232 in terms of i
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
compphysgeek
  • compphysgeek
with \(i^2 = -1\) you can say that \(-232 = i^2 \times 232\) and therefore \(\sqrt{-232} = i\,\sqrt{232}\)
SnuggieLad
  • SnuggieLad
See, i is the square root of a -1 In order to remove it you just take out the negative so it would be \[i \sqrt{232}\]
SnuggieLad
  • SnuggieLad
Then you just take the square root of 232 and write it beside the i leaving the remainder inside the radical

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

SnuggieLad
  • SnuggieLad
\[radical = \sqrt{(number here)} <---\]
anonymous
  • anonymous
thank you
SnuggieLad
  • SnuggieLad
Don't forget to medal the best answer.

Looking for something else?

Not the answer you are looking for? Search for more explanations.