Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

f(x)=x^3+4x^2-5x+6, I need to find the remainder when f(x) is divided by (x-2). How can I do that?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

You could actually do the division (long division). Or you could use synthetic division: from the divisor (x-2) we'd get divisor 2; from the function f(x), we'd get the coefficients 1, 4, -5 and 6. This synthetic division problem then becomes: 2 | 1 4 -5 6 _______2__12_14_____ 1 6 7 20 and 20 is the remainder. I have little idea of where you're coming from, so why not indicate whether you'd prefer to do this problem using long division or using synthetic division; perhaps then I can guide you through more of either procedure.
Or much easier way... Plug 2 in the place of in your f expression
we can write f/(x-2) as f(x)/(x-2)=Q(x)+R/(x-2) or f(x)=Q(x)*(x-2)+R f(2)=Q(2)*(2-2)+R f(2)=Q(2)*(0)+R f(2)=0+R f(2)=R R represents remainder Q represents quotient

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

This is called the remainder theorem
Cool, myininaya!

Not the answer you are looking for?

Search for more explanations.

Ask your own question