anonymous
  • anonymous
How many three digit numbers with distinct digits can be formed such that product of the digits is the cube of a positive integer? a)21 b)24 c)36 d)30
Precalculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zpupster
  • zpupster
Let one digit is fixed to be 1. Then product of two distinct digits must be a perfect cube i.e. (2,4) such that 1*2*4 = 8 = 23 total 3! = 6 combinations (3,9) such that 1*3*9 = 27 = 33 total 3! = 6 combinations One digit is fixed to be 2. (4,8) such that 2*4*8 = 64 = 43 total 3! = 6 combinations One digit is fixed to be 3. (8,9) such that 3*8*9 = 216 = 63 total 3! = 6 combinations One digit is fixed to be 4 (6,9) such that 4*6*9 = 216 = 63 total 3! = 6 combinations
anonymous
  • anonymous
thanks @zpupster
Loser66
  • Loser66
@zpupster I got you except 23 total, 33 total, 43 total.... what do they mean, please explain me. btw , your explanation is perfect

Looking for something else?

Not the answer you are looking for? Search for more explanations.