Partial Fractions\[\int\limits_{}^{}\frac{ dx }{ x^2(x^2-16) }\]

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Partial Fractions\[\int\limits_{}^{}\frac{ dx }{ x^2(x^2-16) }\]

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

so far i have A/(x)+B/(x^2)+C/(x+4)+D/(x-4)
Yep that's right
then i multiplied and simplified basically there's alot more to right out but i cant seem to solve for A or B

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

If you have C and D you can sub in two arbitrary x values that aren't -4 or 4 and you can build a system of equations
but wouldn't that leave you with two things to solve for or am i misunderstanding you
\[\frac{1}{x^2(x^2-16)}=\frac{Ax(x+4)(x-4)+B(x+4)(x-4)+Cx^2(x+4)+Dx^2(x-4)}{x^2(x^2-16)}\] \[1=x^3(A+C+D)+x^2(B+4C-4D)+x(-16A)+(-16B)\] A and B should be easiest to solve for unless I messed up somewhere
sub x = 4, you find C. sub x = -4, you find D. Next you can sub x = 1 and x = 2, that gives you two equations with two unknowns you can solve.
So you are suppose to have \[1=x^3(0)+x^2(0)+x(0)+1\] (so we can have 1=1) and you have \[1=x^3(A+C+D)+x^2(B+4C-4D)+x(-16A)+(-16B)\] You have 4 equations to solve. A+C+D=0 B+4C-4D=0 -16A=0 -16B=1 These easiest two equations to solve are the last two since there is only one unknown in each.
ok ty

Not the answer you are looking for?

Search for more explanations.

Ask your own question