anonymous
  • anonymous
show using limits that f(x)=tan(x) is continuous at x=0
Calculus1
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
for any f(x) to be continuous at x=a, lim x->a- f(x) = f(x) = lim x->a+ f(x) what this means is, the function value at x=a must be approached from both the left and right.
anonymous
  • anonymous
So in your case of f(x) = tan(x) at x = 0, Now using what we discussed earlier, lim x->0- tan(x) = 0 since there is no problem plugging it straight in tan(0) = 0 lim x->0+ tan(x) = 0 again, plugging it straight in. Now since all three parts are equal, the function is therefore continuous at x = 0.

Looking for something else?

Not the answer you are looking for? Search for more explanations.