anonymous
  • anonymous
Find the general solution: y'=(y/x) + [(x^4)e^-(y/x)^5]/[5y^4]
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[y'= \frac{ y }{ x } + \frac{ x^4 * e ^{-(y/x)^5} }{ 5y^4 }\]
anonymous
  • anonymous
When you say find the general solution, do you mean solve for the original function of x?
anonymous
  • anonymous
Basically it's asking for what y is equal to. Doesn't have to have the form "y=" but just needs the y' to go away.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I can't get it, I wish you luck with this problem!..
raffle_snaffle
  • raffle_snaffle
This might help a bit. http://tutorial.math.lamar.edu/Classes/DE/UndeterminedCoefficients.aspx
b87lar
  • b87lar
One solution is:\[y(x) = x {\log(-5 (const-(\log(x))/5))}^{1/5}\]
anonymous
  • anonymous
\(\color{blue}{\text{Originally Posted by}}\) @SithsAndGiggles Let \(y=vx\), so \(y'=v+xv'\): \[\begin{align*}y'=\frac{y}{x}+\frac{x^4}{5y^4\exp{\left(\dfrac{y}{x}\right)^5}}~~\Rightarrow~~v+xv'&=\frac{vx}{x}+\frac{x^4}{5(vx)^4\exp{\left(\dfrac{vx}{x}\right)^5}}\\\\\\ v+xv'&=v+\frac{x^4}{5(vx)^4\exp{v^5}}\\\\\\ xv'&=\frac{1}{5v^4\exp{v^5}}\\\\\\ v^4e^{{\large v^5}}~dv&=\frac{1}{5x}~dx\end{align*}\] \(\color{blue}{\text{End of Quote}}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.