Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

How to factor y^4+1/2+1/(16y^4)? I know that it factors into (y^2+1/(4y^2))^2, but I can't figure out why. I need to simplify this for an arc length integral. Any help is greatly appreciated.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

It is copied correctly; a 3 term sum.
Have you copies it correctly or is Y^4 + (1/2) (y^2) + (1/16)(6^4)?
Does the middle term have the variable y^2 in it?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Unfortunately, no. I have checked my algebra up to that point and I'm also looking at a solution manual; which skips the factoring step. I haven't seen anything like it before. I'm thinking something similar to completing the square is the way to go, but I'm lost at this point. Thanks for your help, by the way.:)
O.K. I was thinking of a perfect square, but now I see that I was on the wrong track.
there is a typo in your question somewhere for sure
\[ y^2+\frac{1}{4}y^2=\frac{5}{4}y^2\] once you combine like terms
Sorry, I just noticed it in the second part. The original question is correct, but the term should be squared.
I have since corrected it; thank you.
still a typo, since \((\frac{5}{4}y^2)^2=\frac{25}{16}y^4\)
Sorry again; I didn't see the missing parentheses. Now it is corrected(knock on wood);)
oooh now i get it \[\left(y^2+\frac{1}{4y^2}\right)^2\]
happy holidaze! you done?
\[y^4+\frac{1}{2}+\frac{1}{16y^4} \] \[(y^2)^2+2 y^2 \frac{1}{4y^2}+(\frac{1}{4y^2})^2\] This is in the form \[a^2+2ab+b^2 \] which can be factored into the form: \[(a+b)^2 \]
probably easiest to see if you multiply out and see that it works
Ahh, yes; I don't know why I didn't see that before. I wanted to express it that way, but for some reason my mind turned off the possibility. Thank you, myininaya, satellite73 and radar. You've made me very happy!
yw (from all of us)
I hope you all have a great happy holiday! :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question