anonymous
  • anonymous
How do i find the integral(or antiderivative) of (3-x)(x^2-6x)^5
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
myininaya
  • myininaya
let u=the inside of nastier part.
myininaya
  • myininaya
Hello?
anonymous
  • anonymous
What do you mean?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
u=x^2-6x du=2x-6=2(x-3)
myininaya
  • myininaya
du=-2(3-x) dx -du/2=(3-x)dx
anonymous
  • anonymous
What do I do with the 3-x though?
anonymous
  • anonymous
replace (3-x)dx with -1/2 du
anonymous
  • anonymous
Why do I replace it with -1/2 du?
anonymous
  • anonymous
you want to convert the integral from integral(f(x)dx) to integral(f(u)du) if u=x^2-6x, then u'(x)=du/dx=2(x-3). thus du=dx u'(x)=2(x-3)dx thus -1/2*du=(3-x)dx the original integral is integrate( (3-x)(x^2-6x)^5 dx) =integrate( u^5 (3-x)dx) =integrate ( u^5*(-1/2) du) after integrating, convert back to x using the fact that u=x^2-6x
anonymous
  • anonymous
OH! okay I understand now. Thank you!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.