Here's the question you clicked on:
leslieRAXoh
MEDALLLLLLLLLSSSSSSSSSSSSSSSSSSSSSSSSSSSS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Find the coordinates of the midpoint between point A(18, -6) and the origin. Answer Skip text editor options
\(\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ &(18\quad ,&-6)\quad &(0\quad ,&0) \end{array}\\ \quad \\ \text{middle point of 2 points }\\ \left(\cfrac{x_2 + x_1}{2}\quad ,\quad \cfrac{y_2 + y_1}{2} \right)\)
wait do do I do next. I got 9,-6/2
\(\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ &(18\quad ,&-6)\quad &(0\quad ,&0) \end{array}\\ \quad \\ \text{middle point of 2 points }\\ \left(\cfrac{x_2 + x_1}{2}\quad ,\quad \cfrac{y_2 + y_1}{2} \right)\implies \left(\cfrac{18}{2}\quad ,\quad \cfrac{-6}{2} \right)\implies (9,-3) \) thus ( 9, -3 ) is the coordinates of the middle point of A and the origin (0,0)
oh thanks you I didn't know what I did wrong, haha your the best
how did you do that
wait can you help me with something else, it the same
yea!!! ok. Find the coordinates of the midpoint of if A(-8, 7) and B(-9, 11).
\(\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ &(-8\quad ,&7)\quad &(-9\quad ,&11) \end{array}\\ \quad \\ \text{middle point of 2 points }\\ \left(\cfrac{x_2 + x_1}{2}\quad ,\quad \cfrac{y_2 + y_1}{2} \right)\implies \left(\cfrac{-9+(-8)}{2}\quad ,\quad \cfrac{11+7}{2} \right)\)
thanks that all I need
so its 8.5, 9 if I did it right