anonymous
  • anonymous
Solve. Check for extraneous solutions. sqrt(x+srt2x)=sqrt2x. Please show step by step instruction. Thankyou.
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
$$\sqrt{x+\sqrt{2x}}=\sqrt{2x}$$is that correct?
anonymous
  • anonymous
yeah.
anonymous
  • anonymous
@oldrin.bataku

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
okay, first thing we want to do is square both sides to get rid of the first radicals:$$\sqrt{x+\sqrt{2x}}=\sqrt{2x}\\\left(\sqrt{x+\sqrt{2x}}\right)^2=\left(\sqrt{2x}\right)^2\\x+\sqrt{2x}=2x\\\sqrt{2x}=2x-x\\\sqrt{2x}=x$$now we square again:$$\left(\sqrt{2x}\right)^2=x^2\\2x=x^2\\x^2-2x=0\\x(x-2)=0$$
anonymous
  • anonymous
to verify these solutions are not extraneous, plug them back in.
anonymous
  • anonymous
How? And thank you

Looking for something else?

Not the answer you are looking for? Search for more explanations.