At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

domain ]-inf,1[U]1,+inf [

|dw:1389059727821:dw|

to find asymptotes you mus take the limit were the domain "breaks" and in its extremes

|dw:1389059855511:dw|

when x aproach from 1+(right) the function tends to infinity

so there is a vertical asymptote at x=1?

yep

is there a horizontal asymptote?

yes take the limit when x goes to infinity(extreme of your domain)

what did you get?

as y approaches 1?

no to zero|dw:1389060282398:dw|

y= 0 is the horizontal one

thanks

you are welcome

|dw:1389060457972:dw|
it should be something like this