Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

A= big semicircle.. what's next?
50pi

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Just remove the semicircle on the left and place it in the gap on the right
this is SAT yes? I remember this one
\[a= \pi*r ^{2}\] \[a= ( \pi * 10^{2} ) /2 = 157.079\]
Isn't it right?
|dw:1389510061781:dw|
|dw:1389510085539:dw|
|dw:1389510103621:dw| so the area is equivalent to just the top semicircle... we merely moved the piece under the line to fill the hole to the right
the radius is very clearly \(r=10\) ergo the area is \(A=\pi r^2=\pi(10)^2=100\pi\)
|dw:1389510292746:dw|
It is a semicircle so you need to divide by 2. The answer is 50pi + 25pi over 2. \[\frac{ 75\pi }{ 2 }\] is the answer.
oops -- good catch. you do need to multiply by \(1/2\) to get just the top:$$\frac12\cdot100\pi=50\pi$$that being said, it is NOT \(\frac12(50\pi+25\pi)\)
|dw:1389510798177:dw|
so.. also find that part and add it?
You need to add that because it is also shaded. The area of that part is 25pi over two.
@liliegirl that part is precisely the part we moved to fill in the top semicircle. it is now accounted for...
oh. right
so.. the answer is.. 314.16 right? thanks guys
@oldrin.bataku Ahhh, Sorry, I didn't notice.... :)))
@stupidinmath no it's half of that, i.e. \(50\pi\)
oh.. since its a semi circle.. k thanks :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question