anonymous
  • anonymous
Hi all! Need serious Multivariable Calc help. Right now we're learning practical applications of double integrals: An annulus with inner radius r=1 and outer radius r=2 has density equal to delta(x,y)=3*(y+sqrt(x^2+y^2))/pi. Compute the mass of the annulus using polar coordinates. I get an answer, but I'm almost sure it's wrong.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
to find the area we must integrate \(\delta\) over the annulus, which is clearly represented in polar coordinates using \(\{(r,\theta):1\le r\le 2\}\)
anonymous
  • anonymous
so notice we must rewrite \(\delta\) in terms of \(r,\theta\); this is no problem as \(r=\sqrt{x^2+y^2}\) and \(y=r\cos\theta\):$$\delta(r,\theta)=\frac3\pi r\ (1+\cos\theta)$$
anonymous
  • anonymous
now we set up our integral:$$m=\int_0^{2\pi}\int_1^2\frac3\pi r\ (1+\cos\theta)\ dr\ d\theta=\frac3\pi\left(\int_0^{2\pi}(1+\cos\theta)\ d\theta\right)\left(\int_1^2r\ dr\right)$$

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
so clearly \(\displaystyle\int_1^2r\ dr=\frac12(2^2-1^2)=\frac32\) and the other integral turns out to be rather simple as well: $$\int_0^{2\pi}(1+\cos\theta)\ d\theta=\bigg[\theta+\sin\theta\bigg]_0^{2\pi}=2\pi+\sin2\pi-\sin0=2\pi$$
anonymous
  • anonymous
thus \(\displaystyle m=\frac3\pi\cdot\frac32\cdot2\pi=9\)
anonymous
  • anonymous
Oh wow Thank you so much!!!
anonymous
  • anonymous
notice it's safe to rewrite the integral as I did above:$$\int\int f(x)g(y)\ dx\ dy=\int g(y)\int f(x)\ dx\ dy=\int f(x)\ dx\cdot\int g(y)\ dy$$
anonymous
  • anonymous
yeah we saw that in class about 2 days ago.
anonymous
  • anonymous
only because there were no factors that depended on both \(r,\theta\)... the \(1+\cos\theta\) only depends on \(\theta\) so we may pull it out as a constant from the \(dr\) integral; similarly, \(r\) depends not on \(\theta\) and so we may pull it out of the \(d\theta\) integral
anonymous
  • anonymous
ok, just wanted to clarify... I do it all the time and I know it confuses the people I tutor IRL
anonymous
  • anonymous
@oldrin.bataku wait...isn't y = r sin theta?
anonymous
  • anonymous
oops -- good catch. I don't think it'll make a difference though
anonymous
  • anonymous
ok I'll double check the work and get back 2 ya
anonymous
  • anonymous
it won't make a difference since \(\cos(t)\) and \(\sin(t)\) have the same area over \([0,2\pi]\)... all this means is I picked a slightly different coordinate system:|dw:1389663840845:dw|this is the regular polar coordinate system
anonymous
  • anonymous
here's my coordinate system:|dw:1389663889927:dw|
anonymous
  • anonymous
oh that makes sense. just another question: when converting to a polar integral, doesn't dxdy become rdrdtheta?
anonymous
  • anonymous
so the final answer is 14.
anonymous
  • anonymous
oops, correcting for that we get $$\int_1^2 r^2\ dr=\frac13(2^3-1^3)=\frac73$$ergo our final result is \(\displaystyle\frac3\pi\cdot\frac73\cdot2\pi=14\)
anonymous
  • anonymous
sweet. Thanks.

Looking for something else?

Not the answer you are looking for? Search for more explanations.