anonymous
  • anonymous
Multivariable integration help: Compute the moment of inertia around the y-axis associated with the region |y|
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
the moment of inertia \((I_x,I_y)\) is computed using:$$I_x=\iint_R x^2 \delta(x,y)\ dx\ dy\\I_y=\iint_R y^2\delta(x,y)\ dx\ dy$$
anonymous
  • anonymous
here \(R\) is given by \(-x^2
anonymous
  • anonymous
can you find \(I_y\)?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
oh duh...I forgot I had 2 dimensions to work with. Thanks a ton!
anonymous
  • anonymous
no problem :-p it's the same integrand only \(y^2\)
anonymous
  • anonymous
wait so same as the first line in the bounds too?
anonymous
  • anonymous
indeed
anonymous
  • anonymous
just a sec, somewhat confused, are the bounds changed to y^2? no, right?
anonymous
  • anonymous
nope!
anonymous
  • anonymous
ok got the answers. you were great. Saved my neck here.
anonymous
  • anonymous
$$I_y=\int_{-2}^2\int_{-x^2}^{x^2}y^2\cdot\frac5{32}\ dy\ dx=\frac5{32}\int_{-2}^2\left[\frac13y^3\right]_{-x^2}^{x^2}\ dx=\frac5{32}\int_{-2}^2\frac23x^6dx$$so we get:$$I_y=\frac5{48}\int_{-2}^2 x^6\ dx=\frac5{24}\int_0^2x^6\ dx=\frac5{24}\cdot\frac17(2^7-0^7)=\frac{5\cdot16}{3\cdot7}=\frac{80}{21}$$

Looking for something else?

Not the answer you are looking for? Search for more explanations.