EmanMahmoud
  • EmanMahmoud
how we choose the function we let it equal u in integration by substitution ??? please any help
Engineering
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jotopia34
  • jotopia34
You chose the function that when you take its derivative, that derivative exists in the original problem. For example if you have (3x^2)*(6x), and you are asked to integrate it, you can take 3x^2 to equal u, \[u=3x ^{2}, du=6x dx\] then you can substitute the 6xdx with just du. Let me know if that doesnt make sense.
LastDayWork
  • LastDayWork
In principle, you can perform a substitution whenever you can completely replace the original variable. Although in practice, not every substitution makes the integral easy to solve.
anonymous
  • anonymous
You have to be able to recognize something in the original integral itself. It is this: if you see an integrand consisting of a product of functions, try to recognize if one of them is or might be the derivative of the other. If this is so, you let that function be u such that when you take du, you get the function you just recognized as being the derivative of the other that it multiplies. This allows you to totally change variables to u and du in the integral which is exactly like integrating xdx. Example: \[\int\limits Sin(x)Cos(x) dx\] We quickly recogniz that Cos(x) is the derivative of Sin(x). So, of course, then, you will allow \[u = Sin(x) \] such that \[du = Cos(x) dx\] Substitue....--> and pretty simple from there isn't it?? :) A useful help: the tricky part is recognizing what is what and you get this by simply famliarizing yourself with A BUNCH and BUNCH and BUNCH of 'important' integrals.

Looking for something else?

Not the answer you are looking for? Search for more explanations.