anonymous
  • anonymous
For a linear function, f(1) = 8 and f(7) = -10. If f(k) = 5, what is the value of k?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
campbell_st
  • campbell_st
the basic form is y = mx + b start by finding the slope of the line \[m = \frac{f(7) - f(1)}{7 - 1}\] or \[m = \frac{-10 -8}{7 - 1}\] so whats the slope of the line...?
campbell_st
  • campbell_st
oops... you need to find the equation before you can find k
myininaya
  • myininaya
Or you could solve the following for k instead of finding the equation of a line: \[\frac{f(7)-f(1)}{7-1}=\frac{f(k)-f(1)}{k-1}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jdoe0001
  • jdoe0001
\(\bf f(1) = 8 \implies (1,8) \qquad f(7) = -10\implies (7,-10) \\ \quad \\ \quad \\ ---------------------------\\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ &({\color{red}{ 1}}\quad ,&{\color{blue}{ 8}})\quad &({\color{red}{ 7}}\quad ,&{\color{blue}{ -10}}) \end{array} \\\quad \\ slope = {\color{green}{ m}}= \cfrac{rise}{run} \implies \cfrac{{\color{blue}{ y_2}}-{\color{blue}{ y_1}}}{{\color{red}{ x_2}}-{\color{red}{ x_1}}} \\ \quad \\ y-{\color{blue}{ y_1}}={\color{green}{ m}}(x-{\color{red}{ x_1}})\qquad \textit{plug in the values and solve for "y"}\\ \qquad \uparrow\\ \textit{point-slope form} \)
jdoe0001
  • jdoe0001
f(k) = 5 -> (k, 5) or "what is the value of "x" if y=5"?

Looking for something else?

Not the answer you are looking for? Search for more explanations.