A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


  • 9 months ago

Find an equation of the tangent line to the curve y=(1-x)/(1+x) points (-2,-3)

  • This Question is Open
  1. Landon_Buckland
    • 9 months ago
    Best Response
    You've already chosen the best response.
    Medals 1

    To solve this you have to apply the quotient rule: \[D _{x}\left[ \frac{ f(x) }{ g(x) } \right]=\frac{ f ^{\prime}(x)g(x)-f(x)g ^{\prime}(x) }{ \left[ g(x) \right]^{2} }\] \[D _{x}\left[ \frac{ (1-x) }{ (1+x) } \right]=\frac{ -1(1+x)-(1-x)1 }{ [1]^2 }\]This simplifies to...\[D _{x}=-2\]Now we can insert our derivative and point into the point-slope form:\[y-y _{1}=m \left( x-x _{1} \right)\] \[-3 - y _{1}=-2\left( -2-x _{1} \right)\]...which simplifies to your solution:\[y=-2x-7\]I hope this helped!

  2. Not the answer you are looking for?
    Search for more explanations.

    Search OpenStudy
    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.