anonymous
  • anonymous
need help proving reduction formula for calc
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
please...
anonymous
  • anonymous
@roadjester
roadjester
  • roadjester
who's the author of your book?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

roadjester
  • roadjester
Stewart?
anonymous
  • anonymous
james stewart
roadjester
  • roadjester
What edition?
anonymous
  • anonymous
calculus early transcendental 7th E
anonymous
  • anonymous
@abb0t
roadjester
  • roadjester
Damn, I've got Calculus 6th oh well
roadjester
  • roadjester
Let me think; haven't done calc in a while
anonymous
  • anonymous
hmmmmm
roadjester
  • roadjester
I'm just gonna BS this, maybe something will come to me. \(\int{tan^nxdx=\int tan^{n-1}}(x) tan(x)dx\)
anonymous
  • anonymous
pg 469 section 7.1 #53
anonymous
  • anonymous
yeah, i have the solution manual too, i was hoping someone would be able to explain it.
roadjester
  • roadjester
oookkaay; I think the solution is self-explanatory...
myininaya
  • myininaya
\[\int\limits_{}^{}\tan^n dx=\int\limits_{}^{}\tan^{n-2}(x)\tan^2(x) dx=\int\limits_{}^{}\tan^{n-2}(x)(\sec^2(x)-1) dx\] \[=\int\limits_{}^{}\tan^{n-2}(x)\sec^2(x)-\int\limits_{}^{}\tan^{n-2}(x) dx\] do a sub let u=tan(x) du=sec^2(x) dx and you will see you are almost done
anonymous
  • anonymous
@myininaya thank you!

Looking for something else?

Not the answer you are looking for? Search for more explanations.