Satsuki
  • Satsuki
Solve the trigonometric equation on the interval [0,2π) 2cos2θ = -√(3) I did θ=5π/12 + kπ and θ=π/12 + kπ and I got { π/12 , 5π/12, 13π/12, 17π/12} as my solution set but when I plug them back in and check on my calculator they don't all equal -√3, what mistakes did I make? (Or is this right?)
Trigonometry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
gorv
  • gorv
\[\cos2\theta=-\frac{ \sqrt{3} }{ 2 }\]
gorv
  • gorv
\[2\theta= \pi+ \cos^-1\frac{ \sqrt{3} }{ 2 } or =\pi-\cos^-1\frac{ \sqrt{3} }{ 2 }\]
gorv
  • gorv
two solution bcozzz cos gives negative value only in 2nd quadrent that is pi-angle or in third quadarent that is pi + angle 2 theta=pi +pi/3 .....or 2 theta= pi-pi/3 theta = (4pi/3)/2....or theta=(2pi/3)/2 theta=2pi/3......or theta=pi/3

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Satsuki
  • Satsuki
If I follow correctly, then that means the solution set will only be {5π/12 , 17π/12}, correct?

Looking for something else?

Not the answer you are looking for? Search for more explanations.