anonymous
  • anonymous
Assume that the readings on the thermometers are normally distributed with a mean of 0 and standard deviation of 1.00 Celsius. A thermometer is randomly selected and tested. find probability of the reading with given values 1.50 and 2.25
Statistics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

nincompoop
  • nincompoop
so we have three significant figures?
ybarrap
  • ybarrap
We are looking for the probability below: |dw:1394346922243:dw| $$ \Phi\left(\cfrac{x_2-\mu}{\sigma}\right)-\Phi\left(\cfrac{x_1-\mu}{\sigma}\right)\\ \approx\cfrac{1}{2} \text{erfc}\left (\cfrac{\mu-x_2}{\sqrt 2 \times \sigma}\right )-\cfrac{1}{2} \text{erfc}\left (\cfrac{\mu-x_1}{\sqrt 2 \times \sigma}\right) \\ \approx 0.0546 $$ Where \(\Phi(x)\) is the standard normal and \(x_2=2.25, x_1=1.50,\mu=0\) and -\(\sigma=1\). Erfc is the error function complement that approximates the standard normal. So there is about 5.46% chance that the reading will be between 1.50 and 2.25 degrees. Does this make sense? Here are two links explaining these concepts. http://en.wikipedia.org/wiki/Standard_normal_distribution#Cumulative_distribution http://en.wikipedia.org/wiki/Error_function#Applications

Looking for something else?

Not the answer you are looking for? Search for more explanations.