Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

The figure below shows a square ABCD and an equilateral triangle DPC.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

Jake makes the chart shown below to prove that triangle APD is congruent to triangle BPC. Statements Justifications In triangles APD and BPC; DP = PC Sides of equilateral triangle DPC are equal In triangles APD and BPC; AP = PB Sides of equilateral triangle APB are equal In triangles APD and BPC; angle ADP = angle BCP Angle ADC = angle BCD = 90° and angle ADP = angle BCP = 90° - 60° = 30° Triangles APD and BPC are congruent SAS postulate What is the error in Jake's proof? He assumes that triangle DPC has all sides equal. He assumes that triangle APB is an equilateral triangle. He assumes that the triangles are congruent by the SAS postulate. He assumes that angle ADC measures 90°.
1 Attachment

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

  • phi
Can you rule out any of the statements (because the are true... and we want the false one) ?
is the false one B ?
  • phi
It definitely sounds wrong. they tell us an equilateral triangle DPC. (which is the big triangle) If you really want to nail it down, notice that the other statements are true. (it would be good to see that)
Well i know D is true so its not that one
wait C looks wrong..
  • phi
I interpret C "generally speaking" He assumes that the triangles are congruent by the SAS postulate. in other words, triangles can be proved congruent by using SAS which is true.
A looks like its right too
  • phi
They tell you its equilateral, and that means triangle DPC has all sides equal. (this is testing if you know what equilateral means) The sad thing is, his two triangles are congruent by SAS if only he had said side AD= BC (sides of a square are =) instead he said AP = PB Sides of equilateral triangle APB are equal they are =, but not because they are parts of an equilateral triangle. But enough! The answer is B, just like you said.
Thank you!
  • phi
yw

Not the answer you are looking for?

Search for more explanations.

Ask your own question