A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 2 years ago
Tangent at the point of inflection question.
anonymous
 2 years ago
Tangent at the point of inflection question.

This Question is Closed

anonymous
 2 years ago
Best ResponseYou've already chosen the best response.0Part d, help anyone? Thanks :)

mathmale
 2 years ago
Best ResponseYou've already chosen the best response.1Would you please start the necessary work, and share with us what you have done. also, please explain what it is that you need to know. Let's build upon what you do already know.

anonymous
 2 years ago
Best ResponseYou've already chosen the best response.0Everything is on the picture, I've done parts a,b and c, and I don't know how to do part d

mathmale
 2 years ago
Best ResponseYou've already chosen the best response.1Your work is very neat. I apologize for not having scrolled down to see what you'd already done. Let me look at Part D. What do you think you need to know to answer Part D correctly?

anonymous
 2 years ago
Best ResponseYou've already chosen the best response.0\[yy _{1}=m(xx _{1})\] \[y (\frac{ 2 }{ 4 }1+\ln \frac{ 2 }{ 4 }) = \frac{ x _{a} 2}{ x _{a} ^{2} }(x4)\] where Xa is 4 because point B is (4,0.193)

anonymous
 2 years ago
Best ResponseYou've already chosen the best response.0y1 (this thing in the bracket) is equal to 0.193 which I got as a coordinate for B, and the slope of the tangent should be equal to derivative of y at point B

mathmale
 2 years ago
Best ResponseYou've already chosen the best response.1I'm going to assume that your point of inflection, (4,0.193), is correct. then \[x _{0}=4,y _{0}=0.193\] and you need only substitute these into the pointslope formula for the equation of a straight line. What is your assumed value for the slope, m?

anonymous
 2 years ago
Best ResponseYou've already chosen the best response.0\[m = \frac{ x2 }{ x ^{2} }\] where x is 4, so it gives me 0.125

anonymous
 2 years ago
Best ResponseYou've already chosen the best response.0Because \[\frac{ dy }{ dx } = m\]

mathmale
 2 years ago
Best ResponseYou've already chosen the best response.1Using your formula for the slope, and calculating the slope that way, I get the same result calculating the slope differently. I, too, get m=0.125, which is the same as 1/8. I'd suggest you substitute these numerical results into the point slope form. Point of tangency is (4,0.193), as before, and slope is either 1/8 or 0.125.

mathmale
 2 years ago
Best ResponseYou've already chosen the best response.1\[y0.193 = (?)*(x  ?)\]

nincompoop
 2 years ago
Best ResponseYou've already chosen the best response.0the second derivative must equal zero to be an inflection point

mathmale
 2 years ago
Best ResponseYou've already chosen the best response.1@nincompoop, are you saying that the inflection point is not (4,0.193)?

nincompoop
 2 years ago
Best ResponseYou've already chosen the best response.0I didn't look at his solution, but that is what to bear in mind when looking for the inflection point.

mathmale
 2 years ago
Best ResponseYou've already chosen the best response.1@nincompoop: If you haven't looked at Nick's solution, then commenting as you have is irrelevant and distracting. If you had found a mistake, then I would have wanted to hear from you.

anonymous
 2 years ago
Best ResponseYou've already chosen the best response.0\[y  (\frac{ 1 }{2 }+\ln2) = \frac{ 1 }{ 8 }(x4)\] . . . \[x8y+8(\ln21)=0\] The problem was that I didn't changed the slope with 1/8 at the beginning so it got more and unnecessary complicated.

mathmale
 2 years ago
Best ResponseYou've already chosen the best response.1@nickersia: Congrats! Again, I admire the neatness and precision of your work.

anonymous
 2 years ago
Best ResponseYou've already chosen the best response.0@nincompoop yes, I used that in part b) Thank you @mathmale ! :)

mathmale
 2 years ago
Best ResponseYou've already chosen the best response.1Thanks for the medal and for becoming a fan of mine! Hope to work with you again soon.

anonymous
 2 years ago
Best ResponseYou've already chosen the best response.0You're welcome, me too! Good luck :)
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.