PhoenixFire
  • PhoenixFire
A free electron in an oscillating field experiences a force \(\mathbf{F}=-e\mathbf {E}(t)\), where \(\mathbf {E}(t)=\mathbf {E_0}sin(wt)\) and \(\mathbf {E_0}=(E_0,0,0)\) <- completely in the x direction. if x(t) is the x-coordinate of the electron and we assume \(x(0)=\frac{dx}{dt}(0)=0\) How do we find the equation of motion along the 'x' axis from this information?
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[m \frac{d^2x}{dt^2} + eE_oSin(\omega t) = 0\] solve this differential equatinon :D
PhoenixFire
  • PhoenixFire
@Mashy how did you come up with that differential?
PhoenixFire
  • PhoenixFire
\(F=ma=-eE(t)\) \(m\frac{d^2 x}{dt^2}=-eE(t)\) Is this what you did?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Yes.
anonymous
  • anonymous
yes yes.. sorry.. i was in a hurry and so i forgot to mention :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.