anonymous
  • anonymous
verify that y=(4e^3x) -2 is an explicit solution of differential equation y'-3y=6
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
use the variable separation to solve this D E
anonymous
  • anonymous
can you try to solve it and explain more about it?
anonymous
  • anonymous
i think that's the right solution

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\frac{ dy }{ dx }=6+3y\] \[\frac{ dy }{ 6+3y }=dx\] \[\int\limits_{}^{}\frac{ dy }{ 6+3y }=\int\limits_{}^{}dx\] \[\frac{ 1 }{ 3 }\ln(6+3y)+C _{1}=x+C _{2}\]
anonymous
  • anonymous
\[\ln(6+3y)=3x+C\] \[e ^{\ln(6+3y)}=e ^{3x+C}\] \[6+3y=e ^{3x}e ^{C}\] \[3y=Ce ^{3x}-6\] \[y=Ce ^{3x}-2\]
anonymous
  • anonymous
I think you need to know an intial value y_0 to find C = 4.
UnkleRhaukus
  • UnkleRhaukus
This question does not ask you to solve the DE, it asks to verify that a given solution solves the DE.
UnkleRhaukus
  • UnkleRhaukus
The function \[y(x)=4e^{3x} -2\] its derivative\[y'(x) = 12e^{3x}\] The differential equation \[\qquad y'-3y\qquad \quad =6\] Plugging the function and its derivative into the DE\[\begin{align} [12e^{3x}]-3[4e^{3x} -2]&=6\\ 12e^{3x}-12e^{3x} +6&=6\\ 6&=6\\ 0&=0 \end{align}\](a true statement) Hence \(y=4e^{3x} -2\) is an explicit solution to the differential equation.

Looking for something else?

Not the answer you are looking for? Search for more explanations.