Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

geerky42 Group Title

The radius, r, of the base of a circular cylinder increases by 2 feet per second while the height, h, decreases by 1 foot per second. How fast is the surface area of the cylinder changing when the height of the cylinder is 50 feet and the radius of the base is 40 feet? I got \(440\pi\) square feet per second, am I right?

  • 4 months ago
  • 4 months ago

  • This Question is Closed
  1. geerky42 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    My work: __________________________________________________________________ Since it is known that surface area of this cylinder is \(SA = 2\pi r^2 + 2\pi rh\)\[\dfrac{dSA}{dt} = 4\pi r\dfrac{dr}{dt} + 2\pi \dfrac{dr}{dt} +2\pi r \dfrac{dh}{dt}\]We are given that r = 40, h = 50, \(\dfrac{dr}{dt} = 2\), \(\dfrac{dh}{dt} = -1\) I plugged in these values and I got \(\boxed{440\pi}\) __________________________________________________________________ But there is no option for \(440\pi\), I'm not sure if there is typo in options or I made mistake somewhere in my work...

    • 4 months ago
  2. klimenkov Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    Your solution seems to be okay, (but you forgot \(h\) in the second addend). Maybe there is a typo or the surface area is computed without bottom and top of the cylinder.. Better to ask the person that has gived you this task.

    • 4 months ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.