anonymous
  • anonymous
\[\lim_{x \rightarrow -\infty} \frac{ x^4*\sin \frac{ 1 }{ x }+x^2 }{ 1+\left| x \right|^3}\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@ganeshie8 ?
anonymous
  • anonymous
@mathslover ?
mathslover
  • mathslover
Yep.. working on it. Did you try using (a^3 + b^3) identity? not sure whether that will work or not.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
x=-1/h and h->0
myininaya
  • myininaya
on that |x| is that a cube? I can't read for some reason. I can click on the code.
anonymous
  • anonymous
yes it is a cube
mathslover
  • mathslover
I suggest you simplify the denominator... use the identity.
anonymous
  • anonymous
that mod x will open with minus?
anonymous
  • anonymous
?
ganeshie8
  • ganeshie8
may be divide numerator and denominator by x^3
myininaya
  • myininaya
so since x<0 then |x|=-x and since we have |x|^3 then we could replace |x|^3 with (-x)^3=-x^3 now recall that if u->0 then sin(u)/u->1 see if you can use that here divide both top and bottom by 1/x
myininaya
  • myininaya
the some l'hopital could be used :)
Zarkon
  • Zarkon
for large x \[\Large \frac{ x^4\sin \frac{ 1 }{ x }+x^2 }{ 1+\left| x \right|^3}\approx \frac{ x^4\sin \frac{ 1 }{ x }+x^2 }{ \left| x \right|^3}\] \[\Large=\frac{ x^4\sin \frac{ 1 }{ x }+x^2 }{ x^2\left| x \right|}\] \[\Large=\frac{ x^2\sin \frac{ 1 }{ x }+1 }{ \left| x \right|}\] \[\Large\approx\frac{ x^2\sin \frac{ 1 }{ x } }{ \left| x \right|}=\frac{x}{|x|}x\sin\frac{1}{x}\]
anonymous
  • anonymous
we have to write x=-1/h and then h->0
Zarkon
  • Zarkon
as \(x\to \infty\) you then get \((-1)\cdot 1=-1\)
Zarkon
  • Zarkon
x to -infinity you get what i have above
anonymous
  • anonymous
@Zarkon how did u use the approximation in the first step?
anonymous
  • anonymous
@ganeshie8 ?
anonymous
  • anonymous
@mathslover ?
Zarkon
  • Zarkon
in my first step I got rid of the 1 since for large x the 1 really contributes almost nothing
Zarkon
  • Zarkon
and by large x I mean large negative (obviously)
anonymous
  • anonymous
@mathslover ?
myininaya
  • myininaya
I would have done it like this: (but this is because i'm not commander data like zarkon (who knows all because he is a superior being to a human) \[\lim_{x \rightarrow - \infty}\frac{\frac{x^4 \sin(\frac{1}{x})}{\frac{1}{x}}+\frac{x^2}{\frac{1}{x}}}{\frac{1}{\frac{1}{x}}-\frac{x^3}{\frac{1}{x}}}\] then use the fact that if u->0 then sin(u)/u->1 it should be pretty easy after this point though.
sidsiddhartha
  • sidsiddhartha
as xtends to - infinity mod(x)=-x now try to put \[x=\frac{ -1 }{ t}\]
anonymous
  • anonymous
ya @sidsiddhartha
anonymous
  • anonymous
i was thinking that only
myininaya
  • myininaya
or i guess you could have just said \[\lim_{x \rightarrow -\infty}\frac{x^4 \sin(\frac{1}{x})+x^2}{1-x^3}=\lim_{x \rightarrow -\infty}\frac{x^3 \frac{\sin(\frac{1}{x})}{\frac{1}{x}}+x^2}{1-x^3}\]
sidsiddhartha
  • sidsiddhartha
|dw:1402332193100:dw|
sidsiddhartha
  • sidsiddhartha
do u get it ? @cody_123
anonymous
  • anonymous
can u write the intermediate steps too? thanks
sidsiddhartha
  • sidsiddhartha
|dw:1402332508279:dw| now just substitute x=(-1/t)
anonymous
  • anonymous
\[\lim_{x \rightarrow -\infty} \frac{ (\frac{ -1 }{ t })^4*\sin(-t)+(\frac{ -1 }{ t^2 }) }{1+ \frac{-1 }{ t^3 } }\]
anonymous
  • anonymous
sorry t->0
anonymous
  • anonymous
@sidsiddhartha ?
anonymous
  • anonymous
is it correct @sidsiddhartha ?
sidsiddhartha
  • sidsiddhartha
no x=-1/t so |dw:1402332969397:dw| it will be like this
anonymous
  • anonymous
ok @sidsiddhartha then ?
sidsiddhartha
  • sidsiddhartha
now just try to simplify it little more
anonymous
  • anonymous
\[\frac{ \frac{ -1 }{ t }*\sin t+t}{ 1+t^3 }\]
anonymous
  • anonymous
@sidsiddhartha ?
sidsiddhartha
  • sidsiddhartha
ya good now can do it :)
anonymous
  • anonymous
w8 a second in denominator i should be 1-t^3
anonymous
  • anonymous
@sidsiddhartha ?
sidsiddhartha
  • sidsiddhartha
nope its all right now just use limit t tends to 0 (sint/t)=1
anonymous
  • anonymous
@sidsiddhartha
anonymous
  • anonymous
\[1+\frac{ -1 }{ t^3 }=\frac{ t^3-1 }{ t^3 }\]
anonymous
  • anonymous
so t^3-1 will come in denominator?
anonymous
  • anonymous
@sidsiddhartha ?
sidsiddhartha
  • sidsiddhartha
|dw:1402334075049:dw| its not "-"
anonymous
  • anonymous
oh silly mistake :P
anonymous
  • anonymous
\[\frac{ \frac{ -1 }{ t }*\sin t+t }{ 1+t^2 }\]
anonymous
  • anonymous
@sidsiddhartha ?
sidsiddhartha
  • sidsiddhartha
it should be (t^3+1)
anonymous
  • anonymous
where?
anonymous
  • anonymous
ya in the denominator
anonymous
  • anonymous
\[\frac{ t-1 }{ t^3+1 }\]
anonymous
  • anonymous
-1
sidsiddhartha
  • sidsiddhartha
yeah :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.