anonymous
  • anonymous
Hi all, I'm looking at Part II of Problem Set 7, on Double Integrals. In the 4th paragraph of the background introduction to problems 4 and 5, it states "The general change-of-variables formula says that if a region R goes to a region R' by a transformation (x,y) → (X,Y) with Jacobian ∂(X,Y)/∂(x,y), then the areas of R and R' are related by A(R') = ∬|J(x,y)| dA." Shouldn't it be "A(R') = ∬|1/J(x,y)| dA" instead? For example, let h=h(x,y); u=x+y; v=x-y. |J(x,y)|=|∂(u,v)/∂(x,y)|=1-(-1)=2; dudv=2dydx ∬dydx = ∬1/|J(x,y)| dudv = ∬0.5 dudv Thank you
OCW Scholar - Multivariable Calculus
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

phi
  • phi
I think dA= dx dy and they are saying \[ \int \int du\ dv = \int \int | J(x,y) |\ dx\ dy \]
anonymous
  • anonymous
Oh, it makes perfect sense to me now. Thank you very much!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.