anonymous
  • anonymous
Hi all, I'm looking at Part II of Problem Set 7, on Double Integrals. In the 4th paragraph of the background introduction to problems 4 and 5, it states "The general change-of-variables formula says that if a region R goes to a region R' by a transformation (x,y) → (X,Y) with Jacobian ∂(X,Y)/∂(x,y), then the areas of R and R' are related by A(R') = ∬|J(x,y)| dA." Shouldn't it be "A(R') = ∬|1/J(x,y)| dA" instead? For example, let h=h(x,y); u=x+y; v=x-y. |J(x,y)|=|∂(u,v)/∂(x,y)|=1-(-1)=2; dudv=2dydx ∬dydx = ∬1/|J(x,y)| dudv = ∬0.5 dudv Thank you
OCW Scholar - Multivariable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
phi
  • phi
I think dA= dx dy and they are saying \[ \int \int du\ dv = \int \int | J(x,y) |\ dx\ dy \]
anonymous
  • anonymous
Oh, it makes perfect sense to me now. Thank you very much!

Looking for something else?

Not the answer you are looking for? Search for more explanations.