A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


  • 2 years ago

Can anyone help me with 1J-2? Not entirely sure where to start...

  • This Question is Open
  1. phi
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    They are saying it is easy to find the derivative of cos(x) and evaluate it at x= pi/2 \[ \cos'(x)\bigg|_{x= \frac{\pi}{2} }= ?\] The other idea is that the expression \[ \lim_{x\rightarrow \frac{\pi}{2} } \frac{\cos(x)}{x-\frac{\pi}{2}}\] is vaguely reminiscent of the definition of the derivative \[ f'(x) = \lim_{\Delta\rightarrow 0} \frac{ f(x+\Delta)- f(x)}{\Delta}\] Now if you can show that the given expression can be re-written to look like the definition of the derivative, then you can claim that it and the derivative (evaluated at pi/2) have the same value (-1 in this case) I would begin by letting \( x = \frac{\pi}{2} + \Delta \) in the given expression.

  2. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.