anonymous
  • anonymous
What is the physical interpretation of the poles and zeros?
Engineering
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

sidsiddhartha
  • sidsiddhartha
let there is a function \[F(s)=\frac{ sE(s) }{ (s-P_1)(s-P_2)}\] in this equation u can see when\[s=P_1 \] or \[s=P_2\] then the function \(F(s)\) will become infinite or simply the function will blow out so here P1 and P2 are the poles. and look when \[s=0\] or \[s= \infty\] then the function will simply vanish so hete s=0 or infinity are the zeroes for which the function will vanish hope this helps :) @Talha_Talha
anonymous
  • anonymous
in the analysis of Control System, the poles (usually determined at denominator of transfer function) will give you system's behavior or steady state response using the unit step function \(f(t) = u(t)\)...
anonymous
  • anonymous
You can also determine system's Stability...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i agree with orion1213 poles and zeroes are required to determine the system stabality

Looking for something else?

Not the answer you are looking for? Search for more explanations.