Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Hi, I'm looking at Part I of Problem Set 7 on Double Integrals. It's the supplementary problem 3A-6. I tried approaching the question by visualising the integrand in 3D and how it cuts region R in the x-y plane. It worked for the first three integrals but the last three threw me off. I checked the answers but I still cannot understand them. Is there a better way to approach these questions? And if possible, explain how the last three integrals can be solved. Thank you!

OCW Scholar - Multivariable Calculus
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

The question link : http://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/3.-double-integrals-and-line-integrals-in-the-plane/part-a-double-integrals/problem-set-7/MIT18_02SC_SupProb3.pdf The answer link: http://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/3.-double-integrals-and-line-integrals-in-the-plane/part-a-double-integrals/problem-set-7/MIT18_02SC_SupProbSol3.pdf
omg ok. I managed to solve them using the mathlet that plots 3D graphs. The volumes cancel out nicely for: \[\int\limits_{}^{}\int\limits_{}^{} x ^{2}y\ dA\] \[\int\limits_{}^{}\int\limits_{}^{} xy\ dA\] Then for \[\int\limits_{}^{}\int\limits_{}^{} x ^{2 } +y\ dA\] I realized I could take out y from the integrals which reduces to \[\int\limits_{}^{}\int\limits_{}^{} x ^{2}\ dA\] + \[\int\limits_{}^{}\int\limits_{}^{}y\ dA\] the second integral being zero. If anyone has a smarter way to solve without using the mathlet please let me know.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question