Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

dmcampos Group Title

18.01SC Single Variable Calculus: Problem Set 1. Question 1F-7c: The result I got was (-3mgr) / ( (1+r^2)^(7/4) ) but the solutions say it is (-3mgr) / ( (1+r^2)^(5/2) ) Can anyone explain to me what I did wrong? I used both the chain rule and the quotient rule, and after doing it, I got this: [ - mg * ( (3/2) * (1 + r^2)^(1/2) * 2r ) ] / ( (1 + r^2)^(9/4) )

  • 5 months ago
  • 5 months ago

  • This Question is Closed
  1. phi Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    the power rule might be the easiest way: \[ d \ x^n = n x ^{n-1} dx \] \[ \frac{d}{dr} \frac{m g}{\left( 1+r^2\right)^{\frac{3}{2}} } = \frac{d}{dr} m g \left( 1+r^2\right)^{-\frac{3}{2}} \] m and g are constants, so we can move them outside the derivative \[ m g \frac{d}{dr}\left( 1+r^2\right)^{-\frac{3}{2}} \\ = - \frac{3}{2}m g\left( 1+r^2\right)^{-\frac{3}{2}- 1} \frac{d}{dr}\left( 1+r^2\right)\\ = - \frac{3}{2}m g\left( 1+r^2\right)^{-\frac{5}{2}} 2 r\\ = \frac{-3mgr}{\left( 1+r^2\right)^{\frac{5}{2}}} \]

    • 5 months ago
  2. phi Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    You can use the quotient rule (though normally when the numerator is a constant you would not bother) your answer is close: \[ \frac{-mg \cdot \frac{3}{2} (1+r^2)^{\frac{1}{2}} \cdot 2 r}{(1 + r^2)^{\frac{9}{4}}} \] The "bug" is that the square of the denominator is \[ \left( (1+r^2)^\frac{3}{2} \right)^2= (1+r^2)^{\frac{3}{2}\cdot 2}= (1+r^2)^3\] if we use the correct denominator we have \[ \frac{-mg \cdot \frac{3}{\cancel{2}} (1+r^2)^{\frac{1}{2}} \cdot \cancel{2} r}{(1 + r^2)^{3}} \\ = \frac{-3mg r}{(1 + r^2)^{3-\frac{1}{2}}} \\ = \frac{-3mg r}{(1 + r^2)^\frac{5}{2}} \] which is the correct result

    • 5 months ago
  3. dmcampos Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Thanks a lot, your answer was perfect, and I figured out my mistake. (and I'm sorry I didn't give many details, I was just going update the post and you had already answered) It was really simple: I assumed \[((1+r^{2})^{\frac{ 3 }{ 2 }})^{2} = (1+r^{2}) ^{\frac{ 9 }{ 4 }}\]instead of \[(1+r^{2})^{3}\]which is obviously the correct way.

    • 5 months ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.