anonymous
  • anonymous
A line passes through (1, –5) and (–3, 7).Write an equation for the line in point-slope form. Rewrite the equation in slope-intercept form.
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

jdoe0001
  • jdoe0001
\(\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ &({\color{red}{ 1}}\quad ,&{\color{blue}{ 05}})\quad &({\color{red}{ -3}}\quad ,&{\color{blue}{ 7}}) \end{array} \\\quad \\ slope = {\color{green}{ m}}= \cfrac{rise}{run} \implies \cfrac{{\color{blue}{ y_2}}-{\color{blue}{ y_1}}}{{\color{red}{ x_2}}-{\color{red}{ x_1}}} \\ \quad \\ y-{\color{blue}{ y_1}}={\color{green}{ m}}(x-{\color{red}{ x_1}})\qquad \textit{plug in the values }\\ \qquad \uparrow\\ \textit{point-slope form}\) and to get it in slope-intercept form , \(\bf y = mx+b\) just solve it for "y"
jdoe0001
  • jdoe0001
hmm got a 0 there for no good reason =) anyhow \(\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ &({\color{red}{ 1}}\quad ,&{\color{blue}{ 5}})\quad &({\color{red}{ -3}}\quad ,&{\color{blue}{ 7}}) \end{array} \\\quad \\ slope = {\color{green}{ m}}= \cfrac{rise}{run} \implies \cfrac{{\color{blue}{ y_2}}-{\color{blue}{ y_1}}}{{\color{red}{ x_2}}-{\color{red}{ x_1}}} \\ \quad \\ y-{\color{blue}{ y_1}}={\color{green}{ m}}(x-{\color{red}{ x_1}})\qquad \textit{plug in the values }\\ \qquad \uparrow\\ \textit{point-slope form}\)
anonymous
  • anonymous
okay so how would the final answer look

Looking for something else?

Not the answer you are looking for? Search for more explanations.