Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

lim of x as sin(3x)/(2x) approaches 0

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

try graphing it.
do you know how to evaluate \[\lim_{u \rightarrow 0}\frac{\sin(u)}{u}?\]
This limit should have been already introduced to you by the squeeze theorem (or at least this is the first way I learned what the above limit is) \[\lim_{u \rightarrow 0}\frac{\sin(u)}{u}=1\] commit this limit to memory it will be useful let's take this limit and see if i can give you a hint on how to do your problem since there is a 3x inside that sin let's let u equal 3x and if u goes to 0 then 3x goes to 0 since u=3x and since 3 doesn't go to 0 then the x must go to 0 so anyways \[\lim_{x \rightarrow 0}\frac{\sin(3x)}{3x}=1 \] try to use this limit here for your problem you may find it necessary to multiply by a 1 to do so

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question