anonymous
  • anonymous
Which of the following sums would be under the radical symbol to find the distance between the points (7, -1) and (-8, -9)? 1^2 + 10^2 1^2 + 8^2 15^2 + 8^2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
is3535
  • is3535
d² = (x2 - x1)² + (y2 - y1)² d² = [ (-8) - (-2) ]² + [ (-2) - (-10) ]² d² = [ (-8) + 2 ]² + [ (-2) + 10 ]² d² = [ -6 ]² + [ 8 ]² d² = 36 + 64 d² = 100 d = 10
Haseeb96
  • Haseeb96
to find the distance between two points we use this formula |dw:1432757144999:dw|
is3535
  • is3535
sqrt ((-2 - (-8))^2 + (-10 - (-2))^2) = sqrt (6^2 + (-8)^2) = 10

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

is3535
  • is3535
d = √([x2 - x1)² + (y2 - y1)²] (-2, -10) , (-8, -2) d = √{[-8 - (-2)]² + {[-2 - (-10)]²} {substituted into distance formula} = √[(-8 + 2)² + (-2 + 10)²] {simplified the double negative signs} = √[(-6)² + (8)²] {added inside parentheses} = √(36 + 64) {evaluated exponents} = √100 {added 36 and 64} = 10 {evaluated the square root of 100}
Haseeb96
  • Haseeb96
B is correct option
anonymous
  • anonymous
thank you
Haseeb96
  • Haseeb96
@is3535 you did wrong
Haseeb96
  • Haseeb96
welcome my brother

Looking for something else?

Not the answer you are looking for? Search for more explanations.