zepdrix
  • zepdrix
Studayyyyyyy Taymeeeeeee!
Biology
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

zepdrix
  • zepdrix
|dw:1432784644165:dw| @Compassionate come nao!! +_+
zepdrix
  • zepdrix
Circle `b` has area 121 times greater than area if `a` \[\Large\rm A_b=121A_a\]
zepdrix
  • zepdrix
Area is pi(r)^2, ya?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

zepdrix
  • zepdrix
\[\Large\rm A_b=121A_a\]So I'll plug in our formula for area,\[\Large\rm \pi r_b^2=121(\pi r_a^2)\]They told us the radius of circle b is 44,\[\Large\rm \pi (44)^2=121(\pi r_a^2)\]Solve for r! :)
Compassionate
  • Compassionate
OS just loaded for me. Sigh. Okay, wait so we did the formula for a circle and plugged in the parts, but what is the pi(44)^2 at the end?
zepdrix
  • zepdrix
I hope the r's weren't too confusing. I was calling the radius of circle b, \(\Large\rm r_b\) and the radius of circle a, \(\Large\rm r_a\). So we have our area relationships,\[\Large\rm \color{orangered}{A_b}=121\color{royalblue}{A_a}\]I'm plugging in the formula for area of a circle on each side, with a's radius on the right, b's radius on the left side,\[\Large\rm \color{orangered}{\pi (r_b)^2}=121\cdot\color{royalblue}{\pi(r_a)^2}\]And then I'm plugging in the value of the radius of circle b, they told us the radius of circle b is 44,\[\Large\rm \color{orangered}{\pi (44)^2}=121\cdot\color{royalblue}{\pi(r_a)^2}\]
zepdrix
  • zepdrix
The pi(44)^2 is `pi` times `radius of circle b squared`, area of circle b.

Looking for something else?

Not the answer you are looking for? Search for more explanations.