Calculus: How do you use trigonometric substitution on this?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Calculus: How do you use trigonometric substitution on this?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\int\limits\!\frac{x^9+x^4}{(x^5-5)^{10}}dx\]
i would substitute \(u = x^5-5\)
Yes, I have split it to \[\int\limits\!\frac{x^4}{(x^5-5)^9}+\int\limits\!\frac{6x^4}{(x^5-5)^{10}}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

that looks nice but partial fractions is not really needed here
forgot the dx there
direct u substitution will do
ah, I couldn't do a u sub on this. Care to lead the way?
ah, and I didn't use partial fraction. Just manipulated it a bit. I think I can handle the rest actually. A medal for your efforts my friend
\[\int\limits\!\frac{x^9+x^4}{(x^5-5)^{10}}dx = \int\limits\!\frac{x^4(x^5+1)}{(x^5-5)^{10}}dx\] substitute \(u=x^5-5 \implies \frac{du}{5} = x^4dx\), the integral becomes \[\frac{1}{5}\int\frac{u+6}{u^{10}}\,du\]
question. how did x^5-1 become u+6?

Not the answer you are looking for?

Search for more explanations.

Ask your own question