anonymous
  • anonymous
What is the simplified form of 24 y to the fifth power over 15 x to the eighth power divided by 8 y squared over 4 x to the fourth power ? 4 y cubed over 5 x to the fourth power 4 y to the fourth power over 5 x cubed 5 x to the fourth power over 4 y cubed 5 x cubed over 4 y to the fourth powerus 3y
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\frac{ 24y ^{5} }{ 15x ^{8} } \div \frac{ 8y ^{2} }{ 4x ^{4} }\]
anonymous
  • anonymous
@iGreen
iGreen
  • iGreen
We can flip the 2nd fraction and multiply..

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

iGreen
  • iGreen
\(\sf \dfrac{24y^5}{14x^8} \div \dfrac{8y^2}{4x^4} \rightarrow \dfrac{24y^5}{14x^8} \times \dfrac{4x^4}{8y^2}\)
iGreen
  • iGreen
Then multiply the numerators and denominators together. \(\sf \dfrac{24y^5}{14x^8} \times \dfrac{4x^4}{8y^2} \rightarrow \dfrac{24y^5 \times 4x^4}{14x^8 \times 8y^2}\)
anonymous
  • anonymous
okay then what? do u have to cross multiply or horizontally multiply
iGreen
  • iGreen
I just showed you, we do it horizontally..we only cross multiply when we have an equal sign between the fractions.
iGreen
  • iGreen
Can you simplify \(\sf \dfrac{24y^5 \times 4x^4}{14x^8 \times 8y^2}\) ?
anonymous
  • anonymous
yeah but non of those are my nswer choies can you simplify it even further if possible?
anonymous
  • anonymous
yeah i think so
anonymous
  • anonymous
but how would you simplify it further because i know you can reduce it
iGreen
  • iGreen
Hold on
anonymous
  • anonymous
k
iGreen
  • iGreen
Okay, first we divide the numbers on the second fraction, \(\sf \dfrac{8y^2}{4x^4}\).
iGreen
  • iGreen
8 / 4 = ?
anonymous
  • anonymous
2
iGreen
  • iGreen
Yes, so we have \(\sf\dfrac{2y^2}{x^4}\).
iGreen
  • iGreen
Now simplify \(\sf\dfrac{24}{15}\) from \(\sf\dfrac{24y^5}{15x^8}\).
anonymous
  • anonymous
8y^5 / 3x^8
iGreen
  • iGreen
Check again
iGreen
  • iGreen
\(\sf 8\) is correct, but \(\sf 3\) is not..
anonymous
  • anonymous
would it be 5
iGreen
  • iGreen
Yes.
anonymous
  • anonymous
ok
iGreen
  • iGreen
So we have: \(\sf \dfrac{8y^5}{5x^8} \div \dfrac{2y^2}{x^4}\)..now we cross multiply(I was wrong earlier..lol)
anonymous
  • anonymous
okay np give me a sec o do that plz
anonymous
  • anonymous
would it be 8y^5 x^4 / 5x^8 2y^2
anonymous
  • anonymous
but if we simplify it would the final answer be \[\frac{ 4y^3 }{ 5x^4 }\]
iGreen
  • iGreen
Yep, you got it.
anonymous
  • anonymous
thnx

Looking for something else?

Not the answer you are looking for? Search for more explanations.