anonymous
  • anonymous
Can someone check my answer? Algebra II
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[2x+5/x^2-3x-10 \left( + \right) x+1/x+2\]
anonymous
  • anonymous
I got the answer ...\[x(x-2)/(x-5)(x+2)\]
anonymous
  • anonymous
@Hero

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@Michele_Laino @nincompoop
anonymous
  • anonymous
@phi
anonymous
  • anonymous
@texaschic101
phi
  • phi
is this \[ \frac{2x+5}{x^2-3x-10} + \frac{ x+1}{x+2} \]?
anonymous
  • anonymous
yes @phi
phi
  • phi
first factor the bottom of the first fraction (to get a better idea of what is going on) \[ \frac{2x+5}{x^2-3x-10} + \frac{ x+1}{x+2} \\ \frac{2x+5}{(x+2)(x-5)} + \frac{ x+1}{x+2} \]
anonymous
  • anonymous
That is what I did
phi
  • phi
to get a common denominator, multiply the second fraction by (x-5) (top and bottom) \[ \frac{2x+5}{(x+2)(x-5)} + \frac{ (x+1)}{(x+2)} \frac{(x-5)}{(x-5)} \] now we can add the tops. First, multiply out the top of the second fraction: \[ \frac{2x+5}{(x+2)(x-5)} + \frac{ x^2-4x-5} {(x+2)(x-5)}\]
phi
  • phi
now add the tops and put the sum over the common denominator \[\frac{ x^2-2x} {(x+2)(x-5)}\] it looks like we can factor out an x \[ \frac{ x(x-2)} {(x+2)(x-5)}\] yes, it looks like the same thing as what you posted.
anonymous
  • anonymous
awesome! thanks for helping me out so quickly! @phi

Looking for something else?

Not the answer you are looking for? Search for more explanations.