Find the derivative of f(x)=sqrt(x+2), and state the domain of f(x) and f'(x). What are the domains?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the derivative of f(x)=sqrt(x+2), and state the domain of f(x) and f'(x). What are the domains?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

The domain is all x values greater than -2. This is because one cannot square root a negative value
Is that for both f(x) and f'(x)?
*greater than or equal. you can take the square root of zero. No, hold on I'll write it out quick

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[f(x)=\sqrt{x+2}\] HAS DOMAIN \(x+2\geq 0\) or \(x\geq -2\)
f' the domain is x is greater than -2. This time it cannot equal -2
\[f'(x)=\frac{1}{2\sqrt{x+2}}\] has domain \(x>0\) almost the same !
no x can equal -1 in f'
no i made a mistake, meant \(x>-2\) so almost the same only difference is at \(x=-2\) where \(f\) is defined and \(f'\) is not
yep
domain of \(f'\): \(x>-2\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question